RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2016-19] B.A./B.Sc. THIRD SEMESTER (July – December) 2017 Mid-Semester Examination, September 2017

Date : 12/09/2017 Time : 11 am - 1 pm

CHEMISTRY (Honours)

Paper : III

Full Marks : 50

[3]

[2]

[1]

[2]

[2]

[2]

[Use a separate Answer Book for <u>each group</u>]

<u>Group – A</u>

<u>Unit – I</u> [8 marks]

1. Estimate the wavelength of electrons that have been accelerated from rest through a potential difference of 40eV. Also calculate the wavelength of a tennis ball of mass 57g travelling at 80 km h^{-1} . Comment on the nature of electron and tennis ball as either classical or quantum.

OR,

Determine which of the following functions are eigenfunctions of the inversion operator 'i'? ('i' is	
making the replacement x to $-x$)	[3]

a) $x^3 - kx$ b) $\cos kx$

Also state the eigenvalue, when relevant.

2. Evaluate the commutators : a)
$$\left[\frac{1}{x}, p_x\right]$$
, b) [H, x], where $H = p_x^2 + V$ and V is a constant. [2+3]

OR,

In Compton scattering, the light as well as the recoiling electrons are emitted from the metal body.

- a) Write down the momentum conservation equation and explain the terms. [2]
- b) What makes one to conclude that the light behaves as particle?
- c) Find the maximum Compton shift.

<u>Unit – II</u> [8 marks]

[Attempt any one question]

- 3. Consider a general reaction $n_a A + n_b B \rightarrow n_c C + n_d D$.
 - a) Define the term 'degree of advancement' (ξ) for the reaction.
 - b) Express the free energy change of the above reaction $\Delta G \left(=\frac{\delta G}{\delta \xi}\right)$ in terms of chemical potentials of the reactants and products for the above reaction. [2]
 - c) From the above, arrive at the relation $\Delta G_0 = -RT \ln Kp$.
 - d) From the above, show that (inserting without derivation the Gibbs' Helmholtz relation) :

$$\left(\frac{\partial \ln K_{p}}{\partial T}\right)_{p} = \frac{\Delta H_{0}}{RT^{2}}.$$
[2]

- 4. a) Consider a reaction that has reached equilibrium. Show that if suddenly the pressure is increased (at a constant temperature) the reaction would advance towards the direction in which volume decreases.
 - b) Comment whether the value of the equilibrium constant of a reaction depends on the (i) choice of standard state (ii) stoichiometric representation of the reaction. [3]

9.

A solute A dissolves in both the solvents B and C which are immiscible themselves. Consider c) an equilibrium between A dissolved in B and the same dissolved in C. Show that the ratio of the concentrations of A in the two solvents is constant at a given temperature provided he solute has the same chemical structure and physical form of aggregation in both the solvents.

<u>Group – B</u> [Attempt one question from each Unit]

<u>Unit – III</u>

[9 marks]

[3]

5.	a)	Give equations to explain why adding ammonium acetate to either zinc amide (s) in liquid ammonia or, zinc acetate (s) in acetic acid causes the solid to dissolve.	[3]
	b)	Estimate pK_1 values of phosphoric and arsenic acids. Refine your statement by deciding which acid is stronger.	[3]
	c)	Which would be the effect on acidity of the medium wheni) Copper sulfate is added to aqueous ammonium sulfate.ii) Mercuric oxide is added to an aqueous solution of potassium iodide.	
		Give necessary equations of explain your answer.	[3]
6.	a)	Explain the enthalpies of adduct formation given in KJ mol ⁻¹ for the following acid-base pairs : H ₃ N•B(CH ₃) ₃ 13·75; CH ₃ NH ₂ •B(CH ₃) ₃ 17·64; (CH ₃) ₂ NH•B(CH ₃) ₃ 19·26;	
		$(CH_3)_3 \mathbf{N} \bullet \mathbf{B}(CH_3)_3 17 \cdot 62.$	[3]
	b)	Discuss the variation of gas phase acidity of hydracids of p-black elements with the help of a Born-Huber type cyclic process.	[3]
	c)	$(CH_3)_2 N - PF_2$ has two donor atoms. One is bound to boron in a complex with diborane; the	
		other to boron in a complex with boron trifluoride. Which is which and why?	[3]
		<u>Unit – IV</u> [9 n	narks]
7.	a)	Sketch the molecular orbital energy level diagram and account for the differences in dissociation energies and bond lengths tabulated below for NO, NO^+ and NO^- .[2+1- [2+1- [2+1-]]SpeciesN-O bond dissociation energy (KJ/mol)N-O bond distance (pm)NO626.86115.1NO^+1046.9106.3NO^-487.8125.8	+1+1]
	b)	Distinguish between extrinsic and intrinsic semiconductors. Give examples.	[3+1]
8.	a)	Construct the inphase and out of phase interactions of two atomic orbitals for a diatomic homonuclear molecule like H_2 , and hence explain the probability of electrons to be found in the resultant orbitals with respect to the atomic orbitals.	[3]
	b)	HF reacts with F^- to form HF_2^- and two F atoms in the later are equivalent. Explain in the light of molecular orbital concept.	[3]
	c)	A and B are atoms of the second and third period of the periodic table, respectively. Assuming x-axis as the bound axis, show that different π mos, A can form with B with pictorial presentations.	[3]
		$\frac{\text{Group} - C}{[Attempt one question from each Unit]}$	
		LAuempi <u>one quesuon</u> from <u>euch Onu</u>	

[8 marks]

b) Draw the reaction outline for the synthesis of following compounds (no mechanism needed)

ii)
$$CH_3C \equiv CH \rightarrow CH_3CH_2CHO$$

Br

c) Explain the following observation

$$CH_{2} = CH - CH = CH_{2} + HBr$$

$$(major)$$

$$CH_{2} = CH - CH = CH_{2} + HBr$$

$$(major)$$

$$CH_{2} - CH = CH - CH_{3}$$

$$H_{2} - CH = CH - CH_{3}$$

$$H_{3} - CH_{2} - CH = CH - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$H_{3} - CH_{3} -$$

d) Indicate the Final products

Indicate the structure of the products P and Q (no mechanism needed) 10. a)

$$\underbrace{ \begin{array}{c} \hline \\ \hline \\ \end{array}} \underbrace{ \begin{array}{c} B_2H_6 \\ \hline \\ \hline \\ ii) \end{array} } P \underbrace{ \begin{array}{c} i) PhC \equiv CH \\ \hline \\ ii) H_2O_2/OH \end{array} } Q$$

b) Draw the reaction outline for the synthesis of following compounds (no mechanism needed) [2]

Give the final product for Birch reduction with proper explanation. [2] c) OMe CO_2H

d) Explain why the following diene can't undergo Diels-Alder Reaction.

,
$$HC \equiv C - C \equiv CH$$
.

Arrange the following Dienes in the order of increasing reactivity in Diels-Alder Reaction. [1] e)

- p-Nitrobenzaldehyde can't undergo self condensation during Benzoin condensation reaction but 11. a) cross product was observed with benzaldehyde ---Explain. [2]
 - b) Cyclopropanone can undergo hydration in a faster rate than acetone —explain. [1]
 - Thioketals are stable in acid condition but can be hydrolyzed easily by Hg²⁺ salt —Explain. c) (No mechanism needed) [1]

[2]

[2]

[2]

[1]

[2]

d) Carry out the following conversion (No mechanism needed)

- 12. a) Benzoin condensation was observed only for aromatic aldehyde but not in aliphatic aldehyde —Explain.
 - b) During 2,4–DNP test aldehyde reacts at room temperature where ketone require heating Explain [1]

Compare the rate of reaction (No mechanism needed).

d) Carryout the following conversions

i)
$$PhCOCH_3 \rightarrow Ph$$
 ii) $CH_3COCH_3 \rightarrow O$

_____ × _____

(4)

[2+2]

[2]

[1]

[2+2]